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Abstract

I review the treatment of statistical and systematic errors, fitting, and

uncorrelated and correlated errors.

1 Statistical Error in Counting Experiments

Imagine a counting experiment where data is acquired for a fixed time t. Suppose we know
the average rate in the experiment should be about R. The probability of measuring N

counts in the experiment is given by the Poisson distribution:

f(N ;Rt) =
(Rt)Ne−Rt

N !
. (1)

Therefore, repeating this experiment an infinite number of times, we would measure, on
average 〈N〉 = Rt counts. Histogramming the results of those experiments we would build
up a Poisson distribution, centered on 〈N〉, with a width given by the standard deviation

σ =
√

〈N〉.

What we take this to mean in our class is: if we measure a certain number of counts in our
experiment N , the statistical error in the number of counts is:

δN =
√
N. (2)
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2 Fitting with Uncorrelated Errors

Suppose we desire to fit data in the form xi, yi, σi, where σi is the uncorrelated error in the
measurement yi. Suppose the fit function is linear f(x) = mx+ b, and by fitting we desire
to determine the parameters m and b, and their errors.

We first construct the variable χ2 to estimate the goodness of fit [2,4]:

χ2 =
∑ (yi − f(xi))

2

σ2

i

, (3)

where the sum is over the data points.

The procedure of least-squares fitting is to minimize χ2. In the case of fitting a line, we’d
take derivatives of χ2 with respect to m and b and set them equal to zero, and then solve
for the best m and b. Doing this gives:
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where
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Note that these reduce to the equations you used in 2nd year [1], if all the errors σi are
equal.

On top of this, by evaluating the second derivative of χ2, we can estimate the uncorrelated
errors in the intercept and slope, respectively:
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Finally, there are programs out there that can fit arbitrary functions f(x) to your data,
with any number of parameters. The programs I normally use are available for free from
CERN [5, 6]. Common functions you might want to fit are polynomials, exponentials, or
Gaussians, or any sum or combination of them. The way these programs work are to
search the parameter space to find the minimum χ2. This gives the “best fit” for the



parameters. In order to determine errors, they then evaluate the second derivative of χ2

numerically, by varying the parameters slightly around the minimum.

It is therefore fine with me if you would prefer instead of using the equations above to use
one of these programs, even for linear fits.

3 Goodness of Fit

The minimum value of χ2 found by the minimization process can be interpreted in terms of
a goodness of fit.

For this, it is useful to define the number of degrees of freedom of the fit:

ν = (number of data points)− (number of fit parameters), (9)

which in turn enables definition of the reduced χ2:

χ2

ν =
χ2

ν
. (10)

The value of the reduced chi-square χ2

ν relates to the goodness of fit:

• If the value is χ2

ν ∼ 1, it means the fit is “good” or “reasonable”.

• If χ2

ν is much larger than unity, it means the quality of the fit is “bad” or “poor”, or
that the function being fit is not an accurate representation of the data.

• If χ2

ν is much smaller than unity, it means the quality of the fit is “too good”, or that
the errors have been overestimated. Or that the data appear to agree suspiciously too
well with the function begin fitted.

With enough experience, the value of χ2

ν and goodness of fit can be estimated graphically
from the data. If the best fit line, when plotted on top of the data with error bars, passes
perfectly through each point and well within the error bars, then clearly χ2

ν will be less
than 1 and the fit is “too good”. If the data points never touch the best fit line within the
error bar, then clearly χ2

ν will be greater than 1 and the fit is “bad”. If, in a fit to say 10
points, a few of the data point have error bars that don’t touch the best-fit line, but the
rest of them do touch the best fit line (some of them possibly lying perfectly on the best fit
line so that their contribution to χ2

ν would be close to zero) then the fit is “good” and you
can anticipate χ2

ν ∼ 1.



Finally, there are varying degrees of “too good”, “good”, and “bad”, and some people (not
me) prefer to state “the probability of exceeding χ2” which can be looked up in tables (see
e.g. Appendix C of Ref. [2]). One way I like to interpret the meaning of this probability is:
if I took these data points and their errors at face value, and then randomly moved the
data points around within their error bars, what’s the likelihood I would get something
close to this value of χ2 again? Ideally, this probability would be around 50%.

The interesting thing about the probabilities is that, the larger the number of degrees of
freedom, the sharper this distribution becomes. So if you have 10 degrees of freedom and
you measure χ2

ν = 1.05, the probability is about 40% (a slightly poor fit). But if you have
200 degrees of freedom and you measure the same χ2

ν = 1.05, it turns out the probability is
smaller 30%. It’s actually not that unlikely to get χ2

ν = 1.5 for 10 data points (prob ∼
15%), but for 200 data points, this would be a disaster (prob < 0.1%).

So the rule of χ2

ν ∼ 1 is a little more qualitative than looking up the probability in the
table.

4 Correlated Errors

Imagine you were taking data, and you made a random error each time. This error would
be uncorrelated to the previous measurement you made. You could then assign an
appropriate error and be confident that the equations in the previous sections would work.
This is indeed the case for the

√
N error relating to counting experiments.

However, imagine instead that you made the same error every single time you made the
measurement.

For example, say you measured the length of a number of lines using a ruler, and you knew
the lengths should be multiples of one another, and got values 1 cm, 2 cm, 3 cm, etc. You
then decide you fit your data to the function f(x) = mx+ b where xi is the suspected
number of multiples and yi is the length you measured. You arrive at the values m = 1 cm
and b = 0. And you get errors σm and σb dependent on what vertical error bars σi you felt
were reasonable based on how well you could read the ruler. You also get χ2

ν = 1.0001. The
fit is “good”.

However, suppose you made one error consistently throughout this whole process. You
misread the scale on the ruler. It was actually in inches! Therefore you made a factor of
2.54 error in every point you measured.

Should you go back and increase the error on every single measurement you made to some
huge value? If you did that, χ2

ν would become very small



This is an example of an error that is correlated between the data points. It is not random
or uncorrelated. The best way (for us) to deal with these kinds of errors is to treat them
separately from other possible errors.

In this case, we would probably go back and correct each data point for the error we made
(changing cm to inches). If there was some uncertainty associated with doing this, it would
probably not be assigned as an uncorrelated error to be inluded in the σi used in the fitting
process.

5 Systematic Errors

The above example also relates to a form of a systematic error. You made a mistake about
something systematically relating to each points.

Systematic errors, however, can also be uncorrelated.

Imagine, in the previous example, that after taking all the measurements, you also realized
you weren’t that careful about lining up the zero point on your ruler, and that you didn’t
take this into account when making the measurements, or assigning the error to the
measurements. This would at first manifest itself as a poor χ2

ν , giving you a hint that you
made some error.

After realizing this, here’s a strategy you could take to address this systematic error.
Measure just one of the lines using whatever technique you were using before. Then
measure more carefully, specifically addressing the systematic error you made. Take the
difference between the two measurements as the likely random error you made for each of
the lines. This error could then be added in quadrature to the error you previously
assigned, giving a revised random error for every data point. You could then perform your
fit again, and χ2

ν would hopefully improve.

This extended example exemplifies two things about experimental physics, one positive and
one negative.

• The positive: The best way to address systematic errors is to change something
about the experiment you did and then investigate carefully what happens in the
experimental result. Consider carefully whether you would have made the same error
(correlated) or a different error (uncorrelated) on each of the data points you
measured.

• The negative: There can be a psychological effect in experimental physics where, as
soon as χ2

ν ∼ 1, you stop looking for uncorrelated errors. The example I gave above is



an example of this. Doing a study in the order given above can lead you dangerously
down this path, especially if you take χ2

ν as some measure of success. This might, for
example, lead you to overestimate your errors in one area, while completely
neglecting the real error at hand.

One way to avoid the negative point is first to make a list of all the systematic errors you
think you have made. Then do experiments to limit those errors, never considering χ2

ν .
Then, after all is said and done, analyze the data and determine χ2

ν . Basically, be aware of
potential errors you could be making, learn about them, but do not necessarily use χ2

ν as a
real measure of success.

6 Propagation of Errors

The formulae used in 2nd year [1] were correct, as long as they are used for uncorrelated
errors. For example, suppose you measure the physical quantities a and b and assign
uncorrelated errors δa and δb. You then desire to calculate the value of some function
f(a, b). The error in f(a, b) is:

δf 2 =

(

∂f

∂a

)

2

δa2 +

(

∂f

∂b

)

2

δb2. (11)

For correlated errors it is more complicated. Consider the case above where a and b are
exactly the same physical quantity a. And the function is f(a) = a. You cannot magically
reduce your errors by a factor of

√
2, as the above formula would imply! The correct error

is obviously δa.

In the case of correlated errors, the correct way to do things is to consider carefully the
correlations between the measured quantities and their errors. If I change a, does b
automatically change in some way? If the answer is yes, then clearly I cannot vary ∂f

∂b

without necessarily varying ∂f

∂a
. In this case, the error in a is manifested also as an error in

b and they are not really independent. Their errors will therefore also not likely be
uncorrelated.

The answer “sort of” is also possible; b can be somewhat correlated with a. In such cases, a
full consideration of cross terms containing e.g. ∂2f

∂a∂b
would be necessary. We will not

attempt such considerations in this class. Either it is fully correlated (b is a well-defined
function of a), or it is completed uncorrelated. Such strategies are also best followed in real
life, too.
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