
Scientific Computing
Lab Assignment 2

Due: Friday, Sept. 21, 2018 at 17:00

Refer to week 1 lecture notes for instructions for submitting your assignment using the handin webpage.
In your submission include

• all required source code and

• any other files asked for in the question.

Put the files in a directory called lab-2. Do not include object or executable files.
For full marks document your work using meaningful comments.
Make sure to include

• your name,

• your student number, and

• the assignment number.

in each file you submit.
Also add comments where necessary to clearly label each solution.

1. Type in the Name and age example from section 3.3 (or the course slides from week 2) into a file you
name name_and_age.cpp:

1 i n t main () {
2 cout << " Please ente r your f i r s t name and age " <<endl ;
3 s t r i n g f irst_name ;
4 i n t age ;
5 c in >> first_name ;
6 c in >> age ;
7 cout << " He l lo "<< first_name<<" (age "<<age<<") "<<endl ;
8 r e turn 0 ;
9 }

Get it to compile. Add a second string last_name and another >> operator to read it in. Modify the
code to ask for an age in years as a double and print it out in months by multiplying by 12.

2. Work through the "repeated words" example from Stroustrup (pp.71-72):
1 i n t main () {
2 s t r i n g prev ious = " " ;
3 s t r i n g cur rent ;
4 whi le (c in >> current) {
5 i f (p rev ious == current) {
6 cout << " repeated word : "
7 << current << endl ;
8 }
9 prev ious = cur rent ;

10 }
11 r e turn 0 ;
12 }

(a) Type the code into RepeatedWords.cpp, and add line-by-line comments to describe what each
line is doing. Get it to compile and run.

(b) In a text-file RepeatedWords.txt, walk through the code line-by-line describing what is in memory
if the user of the program inputs "The cat cat jumped"

3. Implement the square(x) function without using the * operator – instead add x to the return value x
times. Test your function in a simple main function that prints a table of squares from 0 to 100, in a
file MultTable.cpp.

4. (Exercise 4 from Ch. 4) Write a program to play a numbers guessing game in a file GuessingGame.cpp.
The user thinks of a number between 1 and 100 and your program asks questions to figure out what
the number is (eg. “Is the number you are thinking of less than 50?”). Your program should be able to
identify the number after asking no more than seven questions. Hint: Use the < and <= operators and
the if-else construct.

5. (Exercise 5 from Ch. 4) Write a program that performs as a very simple calculator in a file
SimpleCalculator.cpp. Your calculator should be able to handle the four basic math operations –
add, subtract, multiply, and divide – on two input values. Your program should prompt the user to
enter three arguments: two double values and a character to represent an operation.

6. Include a makefile that builds all of the programs above.

