Week3 :

Scientific Computing
Strings, Vectors, Errors and Arrays

Blair Jamieson

University of Winnipeg

Class 3

1/87

Outline

Strings, Vectors, Errors and Arrays

2/87

Outline

Strings, Vectors, Errors and Arrays
using declarations
The standard library string
Standard library vector
Iterators
Errors
Arrays
Multidimensional arrays

3/87

Namespace using declarations

> A namespace is used to put functions and variables outside of the
global scope to avoid name clashes.

» Example: declare function factorial in its header file
myfuncs_factorial.h and want it in a namespace that we call myfcns:

1 namespace myfuncs {
2 double factorial(int an);

}

» Function definition in myfuncs_factorial.cpp:

1 #include "myfuncs_factorial.h"

2 double myfuncs:: factorial (int an){
3 double retval=0.;

! // code to calculate factorial here
5 return retval;

6 }
» To use the function, include the header then either:
» Put using namespace myfuncs; on a line after include,
» put using myfuncs::factorial; on a line after include, or
» explicitly specify namespace on every call to
myfuncs::factorial(someValue)

4/87

The std:: namespace

» As we have seen the namespace std holds the classes from
iostream for input cin and output cout

» std namespace also holds classes to represent string, and
vector

» One way to use these classes, is to explicitly specify the std
namespace on every use of the class

» If we want to have the facility to use all of the classes in the
std namespace without specifying std: : on every use, add
the line of code:
using namespace std;

» If we only want to use the vector class we should use the
line:
using std::vector;

5/87

Defining and initializing std: :string

1

N

[L N

~

>

For the next few slides, assume that we have included the
string header, and put a using statement:

#include <string>
using std::string;

Example initialization of string objects:

string sl; // empty string

// Below: s2 init by copy of string literal ,
// including trailing null

string s2 = "Hi";

string s3 = s2; // s3 init by copy of s2

string s4 (10, ’c¢’); // s4 is ccccecccccc
// Below: s4 init by literal , no trailing null
string s5 ("Bye");

Note that in C, end of character array is given by null (’\0).

6/87

Operations on string objects

» Reading and writing strings:

stringlO.cpp

1 // Note #include and using decl. must be above
int main(){

2
3
1

}

string s;

cout << "Enter a string:" << endl;
cin >> s;

cout << s << endl;

return O0;

» Note that by default » operator for a string will read input

until a white space is found.

» If we enter “Hello World”, then only “Hello” will be put in

our string s.

7/87

Reading until end-of-file condition

» Similar to our examples reading in multiple int objects, we
can test stream state when reading in string objects.

1 int main(){

2 string inword;

3 cout << "Enter a word: " << endl;

| while (cin >> inword) {

5 cout << inword << endl;

6 cout << "Enter a word: " << endl;
)

8 return 0;

9}

» Input continues until end-of-file (Ctrl-d, or Ctrl-z) is entered

8/87

Table of string operations

os € s Writes s to output stream os, return os

is » s Read input stream is until space, return is
getline(is,s) Read line from is into s, return is

s.empty () Return true if s is empty, else return false
s.size() Return number of characters in s

s [n] Return reference to char at position n in s

sl + s2 Return string that is concatenation of s1 and s2
sl = s2 Replace characters in s1 with a copy of s2

sl == s2 Return true if strings contain same characters

sl != s2 Return true if strings differ in any way
<,<=,>,>= Comparisons are case-sensitive and use dictionary ordering

9/87

Reading entire line: getline

» In cases where we want the whole line of input including
spaces use getline function
» Gets string input until a newline is entered
» Arguments: input stream to read from, string to put line into
» Returns istream, so it can be used to test condition of
stream

readline.cpp

1 using std:: getline;
2 using std::cout;

3 using std::cin;

t int main(){

5 string line;

6 cout << "Enter a sentence: " << endl;

7 while (getline(cin, line)){

8 cout << line << endl;

9 cout << "Enter a sentence: " << endl;
10 }

11 return O0;

10/87

String empty and size operations

» empty method of string class returns true if the string is
empty, and false if the string is not-empty

1 string word;
2 cout << "What is your favorite colour?" << endl;
3 if (cin >> word){
4 if (!cin.empty()) {
5 cout << "Your favorite colour is " << word <<
endl ;
6 } else {
7 cout << "Empty string entered" << endl;
5 }
» size method of string returns the number of characters in
the string as a string: :size_type
» This is an unsigned int like type
» string::size_type is a bit long to type — in C++ 11 we can
let the compiler provide an appropriate type using auto
declaration:

I string myname("Dr. Blair Jamieson");
auto len = myname. size () ;

N

11/87

Comparing strings

Rules for string comparisons (<,<=,>,>=):

1. Strings are == if they contain the same characters and
same length (case sensitive).

2. If two strings have different lengths and if every character in
the shorter string is equal to the corresponding character in
the longer string, then the shorter string is < longer string.

3. If any characters at corresponding positions in two strings
differ, than the result of the string comparison is the result
of comparing the first character at which the strings differ

12/87

String concatenation

» Adding two strings with the + or += operator concatenates
two strings

string sl = "Hello ", s2 = "World!\n";
string s3 = sl 4+ s2;

// s3 now holds "Hello World!\n"

sl+=s2; // sl now holds "Hello World!\n"

S

» Can also concatenate string and char literals, but must start
with a string type:

string s4=sl4+" Hi."; // ok: add string and literal
string s5="Hi " 4+ sl; // error: no string operand

string s6=s1 + " " + "Hi."; // ok: starts w/string
string s7="Hello"+"World"; // error: no string in +

B w0 e

13/87

Changing characters in a string

» Functions to check character type are declared in cctype
header file

» Note in C, these same functions are declared in ctype.h.
Typically C++ versions of C header name.h are in cname.

isalnum(c) true if c is letter or digit
isalpha(c) true if c is letter

iscntrl(c) true if ¢ is control char
isdigit(c) true if ¢ is a digit

isgraph(c) true if ¢ is not a space but is printable
islower(c) true if ¢ is lowercase letter
isprint(c) true if ¢ is printable
ispunct(c) true if ¢ is punctuation
isspace(c) true if ¢ is a whitepace
isupper(c) true if ¢ is uppercase letter
isxdigit(c) true if ¢ is hexidecimal digit
tolower(c) Changes letter ¢ to lowercase
toupper(c) Changes letter ¢ to uppercase

14/87

Accessing characters in string

Consider string s="Something";:

» Use subscript operator [] taking a string: :size_type that
gives position of character we want to access

» Subscripts start at O:
s[0] returns the first character in the string.

» The last character in the string:
sl s.size()-1 1

» Be careful not to try accessing a character in an empty
string, or from a subscript beyond the last character.

Example: change letters to be uppercase
1 string s="Something sounds loud!";
2 for (string::size type i=0; i<s.size(); i++){
3 s[i] = toupper(s[i]);
1

5 cout << s << endl;

15/87

Range for loops

Range for loop introduced in C++ 11 can be used to iterate
through elements. Form of range for is:

for (declaration : expression)
statement ;

declaration defines the variable used to access elements

expression is object of a type representing a sequence;
string represents a sequence of characters

Example: use reference to element in sequence to change
characters in string to lowercase:

string s2 = "STOP talking SO Loud!";
for (auto & ¢ : s2) {
¢ = tolower(¢);

}

16/87

More loops and string manipulations

» Can also do range for loop with value, rather than reference
» Example: Count the punctuation marks:

1 string s3 = "So! much... punctuation?";

2 unsigned count = O0;

3 for (auto ¢ : s3){

| if (ispunct(¢)) count++;
5}
» When using regular for loop can use decltype to
automatically get type of loop variable.

» Example: count spaces in s3

1 unsigned spcount = 0;

2 for (decltype(s3.size()) i=0; i<s3.size(); i++){
3 if (isspace(s3[i]) spcount+-+;

4 }

17/87

Example: Convert number to hexadecimal

Enter numbers between 0 and 15 and convert them into a string
of hexadecimal digits until an invalid number is entered.

PrintAsHex.cpp

#include <iostream >

#include <string>

using std::string;

using std::cin;

5 using std ::cout;

6 int main () {

7 const string hexdigs = "0123456789ABCDEF" ;
8 string hexoutput;

9 string ::size_type dig;

10 while (cin >> dig){

11 if (dig < hexdigs.size ()){

12 hexoutput += hexdigs|[dig];

13 }

14 }

15 cout << "You entered 0x" << hexoutput << endl;
16 return O0;

W N e

18/87

std: :vector

» A vector is a sequence of elements you access by an index
» Example:

vector<int> v(6); //vector with 6 elements

1
2 v[0] = 5; // first element has index zero
3 v[l] = 7;

4 v[2] = 9;

5 v[3] = 4;

6 v[4] = 6;

7 v[5] = 8; // last element is at size()—1

» The type of object in each element is specified between <
and > after the vector type

size()

vio] v[1] v[2] v[3] v[4] V5]
s 7 Jo Ja [6 8]

Figure: vector v’s elements.

19/87

std:

V]

:vector

A vector is a collection of objects that all have the same
type.

» A vector is a container because it contains other objects

To use vector we need to include the vector header, and
have a using declaration:

#include <vector>

using std::vector;

std: :vector is a class template, which we can use quite
easily, even though implementing your own class templates
requires a deep understanding of C++

templates are instructions to the compiler for generating
classes or functions

The process of creating classes or functions from templates
is called instantiation

When using a vector class template we specify inside

angle brackets <> the type of objects the vector will hold.

20/87

Defining and instantiating vectors

> Some examples of vector definitions:

1 vector<int> ivec; // ivec: vector of integers

2 vector<double> dvec; // dvec: vector of doubles

3 vector<string> svec; // svec: vector of strings

4 // below: vvs holds a vector of vectors of strings
5 vector<vector<string>> vvs;

6 vector<Box_st> vbox; // vector of Box_ st

» Some examples of vector initialization:

1 vector<string> svec; // init as empty vector

2 // since C++11 can use list initialization

3 vector<string> scols = {"red", "green', "blue'};

4 vector<string> sv2(scols); // copy scols into sv2
5 vector<string> sv3 = scols; // copy scols into sv3

6 //below error: sv4 cant hold int
7 vector<string> sv4(ivec);

21/87

More vector initialization

Can initialize with list using {} brackets

Can initialize with value using () brackets

vector<int>
vector<int >
vector<int >
vector<int>
vector<int >
vector<int >

vecl (10) ; //
vec2(10,5); //
vec3{10}; //
vecd {10,5}; //
vec5b={10,5};//
vec6(vech); //

vecl
vec2
vec3
vec4d
vech
vecbh

holds
holds
holds
holds
holds
holds

10
10

Zeros
fives

1 ten

10
10
10

and 5
and 5
and 5

22/87

Adding elements to a vector

» Say we want to build a vector holding numbers from 0 to 99.

» Create empty vector, then fill it using vector member
function called push__back.

> push_back method adds an element as a new last element
(at the back) of the vector. For example:

1 vector <int> vl;

2 for (int i=0; i<100; i++)

3 vl.push_back(i);

> As another example, we might want to read input strings
and store the values using a vector:

vector<string> words;

string inword;

3 while (cin >> inword){

| words . push__back(inword);

5}

V]

23/87

vector size

» In C and Java memory use is more efficient to define vector
at its expected size.

» In C++ it is better to add elements at run time, rather
than specify a size in the declaration.

» This is because the C++ standard has been made to allow
efficient addition of elements to vector

» Exception to this rule is if vector needs to have all the
same values.

» Programming implications for adding elements to vector:

» We cannot use a range for loop if the body of the loop
adds elements to the vector

24/87

Operations on vector

Consider the following operations on vector v, vl, v2;:

v.empty () return true if the vector is empty

v.size() return the number of elements in vector
v.push_back(val) adds element of value val to end of vector

v [n] returns the value in vector at index n

vl = v2 replace elements in v1 with copy of elements in v2
vi={a,b,c,...} replace elements in vl with elements in list

vl == v2 returns true if vectors have same elements

vl = v2 returns true if vectors have any difference
<,<=,>,>= Have normal meanings using dictionary ordering

> As with accessing characters in string we can access element in a
vector using [] operator.

» Subscript of first element in vector is v[0], and last is
vvec.size()-1].

» Be careful not to subscript an element in an empty vector or beyond
the size of the vector.

25/87

Example vector use

> Lets write a short program that:

» Asks the user to input a list of grades
» Counts the number of grades in each 10% increment (0-9,
10-19, ..., 90-99, 100).

CountGrades. cpp

1 // Above add required #include and using statements
2 int main () {

3 unsigned grade;

4 vector<int> counts(11);
5 while (cin >> grade){
6 if (grade <= 100){
]

7 counts| grade/10 | ++;
s 3

s}

10 // print table etc...

11 return 0;

12 }

26/87

Subscripting a vector does not add elements

» Use push_back to add elements to a vector; size of the
vector does not change by using subscripting ||

» Cautionary examples:
vector<int> iv; // empty vector

for (decltype(iv.size()) i=0 ; i < 10 ; i++){

iv[i] = 1i;// error: iv has no elements!
}
cout << iv [0]; // error: iv has no elements!

vector<int> jv(10); //vector of 10 elements
cout << jv[10]; // error; jv has elements 0 to 9

27 /87

Growing a vector
Use the push_back() member function to add elemnts to a
vector:

vector<double> vd;

vd.push_ back (2.7);

vd.push_back (5.6) ;
vd.push_back (7.9) ;

W N e

size()

wfo []

vd: |1 | —=l27

vd[1]

vd: |2 | —»{27 |56 |Vd[2]
vd: 3 | —f»27 [56 [79 |

Figure: vector vd’s elements after each line of code.

28/87

A numeric example (4.6.3)

1
2
3
4

16

temperatures.cpp

int main(){

vector<double> temps; // temperatures
double temp;
cout<<"Enter temperatures, non—numeric to end
inputs "<<endl;
while (cin>>temp){
temps.push_back(temp);
¥

double sum=0.; // compute mean temperature
for (int i=0; i < temps.size(); ++i){

sum += temps|[i];
}

cout<<"Average temperature:
"<<sum/temps. size ()<<endl;

// compute median

sort (temps.begin(), temps.end());

cout<<"Median temperature: "<<temps| temps.size () /2

|<<endl;
return 0O-:

Read in temperatures to a vector and compute mean, and median

29/87

Notes on numeric example (4.6.3)

1. cin» temp reads a double — if it succeeds in getting a
double we push it to the end of the vector

» eg. if you type in: 1.2 3.4 5.6 7.8 9.0 |
» then temps gets the five element above
» the | isn’t a double, so the while loop exits
2. We calculate the average by summing over the elements,
and dividing by the size of the vector

3. To calculate the median (a value chosen so that half the
values are smaller, and half are larger), we sort the elements

4. We used the standard library sort from the algorithm
library — it uses the beginning and end of a sequence as
arguments

5. We used vector’s begin() and end () methods to get the
beginning and end of the sequence

30/87

A text example (4.6.4)

W N e

16

vector is particularly useful because it can be used for many
problems

wordlist.cpp

int main(){
vector<string> words; // white space separated words
string s;
cout<<"Enter words separated by space (TZ to
end) : "<<endl;
while (cin >> s){
words . push__back(s);
}
cout<<"Number of words: '"<<words.size ()<<endl;
sort (words. begin (), Words.end());
for (int i=0; i<words.size (); ++i){
if (i==0 || words[i—1] != words[l]){
cout<<words[i]<<endl;
}
}
return O0;
}

31/87

Iterator intro

» In addition to using subscripts, iterators are another way
to access elements of string and vector. Iterators exist
for all of the standard library container types.

» Iterators are similar to pointers:

» iterators give indirect access to an object that is an element
of a container

> iterators can be valid if it denotes an element of the vector or
a position one past the end of the container, or invalid if it is
any other value

» Instead of using an address to get an iterator, we use special
member functions begin() and end () to get iterators
referring to the first and one past the last elements in the
container

» If the container is empty both the begin and end methods
will return off-the-end iterators.

32/87

Using iterators

» Example of iterator use to change characters in string to
uppercase:

TestIterator.cpp

1 string ss("stop shouting so loud!");

2 for (auto iter = ss.begin(); iter != ss.end();
iter++){

3 xiter = toupper(*xiter);

L}

» Note that the * operator is used to dereference the iterator,
giving you the value of the object at that iterator location

33/87

[terators and generic programming

>

>

S R

A key feature of C++ is the use of iterators to visit the elements of
containers

The vector container in addition to defining == and != operators,
defines (<,<=,>,and >=) operators
In general iterator types will define == and != operators, but

depending on the contents of the container may not define other
comparison operators (<,<=7 >, or >=)

By routinely using iterators == and != we don’t have to worry about
precise type of container we are looking at

Iterator types:

vector<int> vl;

const vector<int> v2;

// itvl with type vector<int >::iterator

auto itvl = vl.begin();

// itv2 with type vector<int >::const_iterator

; auto itv2 = v2.begin () ;

// itcvl has type vector<int >::const iterator
auto itcvl = vl.cbegin ();
const_iterator type is used when we don’t want to modify the
contents of the container being iterated over
34/87

Iterator operations

*iter
iter->mem
++iter

—--iter

iterl == iter2
iterl != iter2
iter + n

iter - n

iter +=n

iter -= n
iterl - iter2
>,>=,<,<=

return ref to element denoted by iter

fetches member named mem from element denoted by iter
increment iter to refer to next element

decrement iter to refer to prev element
return true if iterl and iter2 are equal

return true if iterl and iter2 differ

adding (subtracting) an integer from iterator yeids an
iterator that many elements ahead (back) in container
assigns iter iterator n ahead in container

assigns iter iterator n back in container

yields number when added to iter2 gives iterl
Iterator is less than another if it refers to element
coming before the one being compared to

35/87

Using iterator arithmetic

Example use of iterator arithmetic to do a binary search.

» A binary search looks for a particular value in a sorted
sequence
> Algorithm used is to look at element at midpoint of
sequence
» If value is one we want, we are done;
» If value is larger than one we want then calculate new
midpoint of smaller sequence before current midpoint;
» If value is smaller than one we want then calculate new
midpoint of smaller sequence that is after midpoint.

36/87

Example iterator arithmetic

15

BinarySearch.cpp

// vector<string> words; has already been defined and
filled above

string valueSearched = "something";

auto first = words. begin () ;

auto last = words.end () ;

auto mid = words. begin () + (last—first)/2;
while (mid != last && xmid != valueSearched){
if (valueSearched < *mid){
last = mid;
} else {
first = mid + 1;
}
mid = first + (last—first)/2;
}
// mid now refers to element that contains same string
as valueSearched
// or points to one past end of container.

37/87

Types of errors encountered

> Compile-time errors: are found by the compiler. Examples
are syntax errors and type errors

» Link-time errors: errros found by linker when trying to
combine object files into an executable program

> Run-time errors: found by checking the runing program.
They could be detected by hardware, a library, user code.

> Logic errors: are mistakes in the code found by a
programmer.

38/87

Goals in programming

Your programs should:

1.

Al

Produce the desired result for all legal inputs

Give reasonable error messages for all illegal inputs
Not worry about misbehaving hardware

Not worry about misbehaving system software

Terminate after finding an error

39/87

Acceptable software

Approaches to producing accepatable sofware incude:
1. Organizing sofware to minimize errors
2. Eliminating most errors by debugging and testing

3. Making sure remaining errors are not too serious

40/87

sources of error

> Poor specification: If we don’t conisder all edge cases, we
may miss some cases that should be handled in our code

» Incomplete programs: Need a way to know when all of the
cases have been coded

> Unexpected arguments: Functions take arguments — if a
function is given unexpected arguments need to handle that.
(eg. sqrt(-1.2) can’t return a correct double value)

» Unexpected input: Need ways to handle if a user enters a
string when we request a number, etc.

» Unexpected state: need a way to check if the data available is
complete enough for the computation being done in the
program

> logical errors: The code simply doesn’t do what it is
supposed to do — these have to be found and fixed

41/87

Compile time errors — syntax errors

» Compiler is first defense against errors in your program

» Only if your program conforms to the language specification
will it allow you to proceed

» Example syntax errors in call:

int area(int length, int width);

2 int sl = area(7; // error: missing)

3 int s2 = area(7) // error: missing;

+ Int s3 = area(7); // error: Int is not a type
5 int s4 = area(’7); // error: non—terminated

character
» It is easy to correct these when they are found

» Typically the compiler message is a bit cryptic until you get
used to them

» Try these errors out in a code, to see what error messages
compiler gives

42/87

Compile time errors — type errors

int area(int length, int width);

1
2 int x0 = arena(7); // error: undeclared function

3 int x1 = area(7); // error: wrong number of arguments
+ int x2 = area("seven",2); //error: wrong first

argument type
Try these errors out in a code, to see what error messages

compiler gives

43/87

Non-errors

1 int x4 = area(10,-7); // ok, but what is width —77

2 int x5 = area(10.7,9.3); // ok, but truncates to 10
and 9

3 int x6 = area(100,9999); //get overflow of int in area

» As you get more practice, you’ll get your code to compiler
easier

» Just because your code compiles, doesn’t mean it will run

44/87

Link-time errors

v

v

v

v

Every function must be defined exactly once

It must be decalared exactly the same in every file that uses
it — we do that with include files

Example of a possible link-time error:

int area(int length, int width);
int main(){
int x = area(2,3);
}
Only an error if area is not defined in another file linked to
this one

Also, area function must e defined with same types, ie:

int area(int length, int width){ return
length*width; }

45/87

Run-time errors

» Consdier this code that compiles:

1
2
3
4
5

6

int area(int len, int wid){
// calculate area of rectangle
return lenxwid;

}

int framed_area(int x, int y){ // area in frame
return area(x—2, y—2);

}

int main(){

int x = —1, y=2, z=4;

int areal
int area?2
int aread

area (x,y);
framed_area (1,z);
framed__area(y,z);

double ratio = double(areal)/area3;

return 0;

46/87

Run-time error example notes

v

Calls to area functions use variables (good) — but could hide
negative values

v

areal = -2, area2 = -4 and area3=0

v

ratio gets a divide by zero error
Two ways to fix this:

» Let the caller of area() deal with bad argurments
» Let area() deal with bad arguments

v

47/87

Error handling

we can throw an exception

here we wrap the throw call in a function called error, that
is defined in “std_ lib_facilities.h”:

1 #include <exeption>

2

void error(const string & s){
throw runtime_error(s);

}

The function takes a string as argument, and doesn’t return
a value

If the runtime__error isn’t caught by the calling code, then
the program will exit

48/87

Error handling — caller deals with errors

» We can protect calls to area by checking values passed to it:

if (x<=0 || y <=0) error('non—positive area()");
int areal = area(x,y);

» Protecting call to framed__area requires check like:

if (y<=2 || z<=2) error("non—positive
framed area()");
int area3 = framed_area(y, z);

» This is a bit messy — we had to know that framed_ area
subtracts two — there is a hidden “magic number”

» If someone later changes framed_ area to only subtract 1,
need to modify all of the checks

» Code that breaks easily with a small change like this is
called “brittle”

49/87

Error avoidance

» Use const variable instead of magic number:

const int frame_width = 2;
int framed_ area(int x, int y){
return area(x—frame_width, y—frame_width);

}

» Then our error handling can use the const value:

if (y <= frame_area || z <= frame_area) {
error ("non—positive framed area");

}

int area3 = framed_area(y, z);

» Disadvantage of this method is that it add “ugly” code to
check arguments everywhere the function is called.

50/87

Error handling — function deals with errors

» modify the functions:

const frame_ width=2;
int area(int x, int y){

if (x<=0 || y <=0) error('non—positive
area');
return xxy;
}
int framed_area(int x, int y){
if (x <= frame_width || y <= frame_ width)
error ("non—positive framed area");
return area(x—frame_width, y—frame_width);
}
> Use this method when you can, since it should shorten your
code

» Reasons given why you may not want to do this:
» The function may be from existing library that you can’t
modify
» The function doesn’t know what to do in case of an error
» Performance is an issue — checking takes extra time

51/87

Error reporting

» Throw an exception, or return a documented bad value

» Example 1 of returning bad value:

// ask user for a yes/no answer
// return ’b’ to indicate a bad answer
char ask_yn(string question){
cout << question << "? (yes or no)\n";
string answer=" ";
cin >> answer;

if (answer = "yes" || answer =— "y') return
7y7;

if (answer =— "no" || answer = "n") return
7n7,

i

return 'b’;

52/87

Error reporting — second example

» Example 2 of returning bad value:

// calculate area of rectangle

// return —1 to indicate bad argument

int area(int length, int width){
if (length <=0 || width <= 0) return —1;
return length * width ;

}

» Disadvantages of this method are:

» Both caller and function must test
» Function may not have a good value to return as "bad"

53/87

Exceptions

» Exceptions seperate detection from handling of an error

» Function that finds an error throws exception

» Caller (direct or indirect) of function can catch exception
by using a try catch block

class Bad_area{}; // type for errors from area()
int area(int len, int wid){ // calc. area

if (len <=0 || wid <= 0) throw Bad_ area();
return lenx*xwid;
Y/l
int main ()
try {
int x=—1; int y=2; int z=4;
int areal = area(x,y);
int area2 = framed_area(l,z);
int area3 = framed_area(y,z);
dobule ratio = areal / double(area3);
return 0;

}

catch (Bad_area) {
cout << "Oops! bad arguments to area () '<<endl;
return 1: 1 54 /87

Range errors

» Collections of data are kept in containers

» Most commonly useful standard container is vector

» What happens when we try to access an element that isn’t
in vector v’s range [0:v.size()) ?

» It throws an exception of type out_of_range

» Do you see an error below?

int main()

try {
vector<int> v;
for (int x; cin >> x) v.push_ back(x);
for (int i=0; i <=v.size(); ++i)

cout <<"v['<<i<<"|=="<<v[i]<<endl;

return 0;

} catch (out_of range){
cerr <<"Oops! Range eror\n';

return 1;

} catch (...){
cerr <<"Exception: something went wrong\n";
return 2;

} 55/87

Dealing with bad input

» On bad input we use the "error" function:

void error (const string & s){
throw runtime error(s);
}
// we can catch the runtime error in our main
function :
int main ()
try {
// ... our program
return 0; // 0 indicates success
}
catch (runtime_ error & e){
cerr << "runtime error:" << e.what() << endl;
return 1;

}

56/87

Dealing with bad input, notes

v

e.what () extracts the error message from the
runtime_error

» You can read more on references (the &) in section 8.5.4-6

» Catching the runtime_error above doesn’t catch the
out_of_range error

» We can use several catch blocks to look for the different
types of exception that might be thrown

» Note that std_lib_facilities.h also defines void error/(
string &s1, string &s2) that allows passing a second
string:

void error(const string & sl, const string &s2){
throw runtime_error(sl + s2);

}

57/87

Narrowing errors

» When a variable is implicitly converted from a large variable
to one that is smaller (eg. double to int) and information
will be lost

» We can use narrow_cast to try to catch narrowing errors:

int x1 = narrow_ cast<int >(2.9); // throws
int x2 = narrow_cast<int >(2.0); // ok
char ¢l = narrow_cast<char >(1066); // throws
char ¢2 = narrow_cast<char>(85); // ok
» The <...> brackets are the same as those used for vector —
they are used to specify a type, rather than value

58/87

Logic errors

» Consider this code to find the lowest, highest and average
temperature:

int main(){
vector<double> temps;
for (double temp; cin >> temp;)
temps . push_back(temp);
double sum = 0, high_temp = 0, low_temp=0;
for (int x : temps){
if (x>high_ temp) high temp = x; //find high
if (x<low_temp) low_temp =x; //find low
sum += X;
}
cout<<"High temperature: "<<high temp<<endl;
cout<<"Low temperature: "<<low_temp<<endl;
cout<<"Average
temperature: "<<sum/temps. size ()<<endl;
return O0;
}

» Note initial values of high and low — what happens if

temperatuers are never below or above zero?
59/87

Estimation

v

How do you check that your program gives the correct
answer?

You should estimate what you expect to get to answer the
question:

Is this answer to the problem plausible?

Example: what would you expect to get for the area of a
regular hexagon with 2cm side? If we get an answer 10.55 is
the answer right?

(No it should be: 6 + 4/2 = 11.664 — draw it and check)

60/87

Error checking : insert invariants

» An invariant is a condition that should always hold

v

An example invariant check:

int my_complicated_function(int a, int b, int c)(){
// the arguments are positive and a<b<c
if (!(O<a && a<b && b<c)){
error ("Bad arguments for mecf");
}
}

There are many valid ways of searching for bugs

v

v

Its best to keep tidy, well formatted code to help decrease
the debugging time

61/87

Pre-conditions

» A requirement on a function’s arguments is called a
pre-condition.

» It is a condition that must be met for the function to
perform properly

» Document pre-conditions for functions in the comments
» Apply checks and give an error if conditions are not met

» You can always remove the checks after you finish debugging
if they impose too searious of a performance burdent

62/87

Post-conditions

» Post-conditions check that the return value is in a
reasonable range, for example:

int area(int len, int wid){

}

// calculate area of rectangle

// pre—conditions: len and wid are positive

// post—condition: returns a positive value that
is the area

if (len <=0 || wid <=0) error("area()
pre—condition");
int a = len * wid ;

if (a<=0) error("area() post—condition");
return a;

> Q: Is there a pair of values so that the pre-conditinos are
met, but not the post-conditinon?

63/87

Testing

» Your program is ready once you find “The last bug”

» “The last bug” is a programmer’s joke — it is impossible to
know when you’ve found it

» Testing is executing a program with a large set of
systematically chosen inputs and comparing the results to
what we expect

» Systematic testing with millions of different inputs can’t be
done by humans — should be automated somehow.

64/87

Debugging

v

v Yy

v

After you finish writing program, often will have errors

Finding and fixing the errors (bugs) is called debugging
Debugging steps:

1.
2.
3.

Get program to compile
Get program to link
Get program to do what its supposed to do

Debugging advice:

1.

@

e

o Ot

Report errors using the "error()" function and catch the
exception in main()

Make your program easy to read

Add comments to give details about the code that you can’t
get from reading the code itself (ie. what is it supposed to
do?)

Use meaningful variable and function names

Use a consistent code layout

Break code into small funcitons — each expressing a logical
action

Use library facilities rather than your own code when you can

65/87

Common compile time errors

» Is every string terminated?

cout << "Hello, << name << ’'\n’; //oops
» Is every character literal terminated?

cout << "Hello, " << name << ’\n; //oops
» Is every block terminated

int f(int a){
if ((a>0){
/% do something x/

else { //oops
/* try something else x/
}

/]

66/87

More common compile time errors

» Is every set of parentheses matched?
if (a<=0 //oops
x=f (y);
» Is every name declared?

» Did you include needed header files?

» Is every name declared before it is used?

» Did you spell every name correctly and with consistent
capitalization?

» Did you terminate each expression statement with a
semicolon?

sqrt (y)+2 // oops
z = X + 2;

67/87

Debugging tools

» Sometimes you can find the problem by adding more
printouts

» You can also use a tool called a debugger to step through the
code line by line, and look at variable contents at each step

» Example adding temporary printouts to say where you get
to in the code:

int my_fen(int n, double b){
int res=0;
cerr << "my_fect("<<a<<", "<<b<<")\n';
cerr<<"my_fct() returns '<<res<’\n’;
return res;

68/87

Arrays

>

Arrays are like fixed sized vectors (whose size cannot be
changed)

Arrays are built-in to C+ and C — no include file is needed
to use arrays

An array declaration is of the form arr[nelems], where
arr is the name being defined and nelems the number of
entries in the array (>0).

Example definitions and initialization of arrays:

unsigned nmax = 99;

const unsigned nelems = 99;

int arr[10]; // array of 10 ints

int sparr[nelems]; // array of 99 pointers to int
string sarrl [nmax|; // error: nmax not constexpr

// below ok only if get size() is constexpr
string sarr2| get_size() |;

69/87

Initializing array elements

1

~

8

> We can list initialize elements in an array.

> Size of array must match number of elments in the list
initialization; size can be omitted when doing list init

const unsigned nelems = 3;

int arrl|[nelems | = { 0, 1, 2 };

int arr2[] = {4, 5, 6, 7};

int arr3[5] = { 0, 1, 2}; // err: need 5 initialisers
string arr4[2] = {"hi", "bye'};

// below error: need only 2 initializers

int arr5[2] = { 0, 1, 2};

int arr6[7] = {}; // initialize with 7 zeros

70/87

Character arrays

» Character arrays can also be initialized from string literals

» Careful to remember string literals are null (’\0’) terminated

» There is no copy initializer for arrays

char
char
char
char
char
cl =

cl[] ={ H, ’e’, 17, 17, 70’ };

c2[] ={ 'H’, ’i’, ’\0’ }; // null terminated
c3[] = "Hello"; // also null terminated

c4[6] = "Hello!"; // error: no space for null
¢ = cl; // error: no copy init

c2; // error: no array copy

71/87

Pointers and references and arrays

N

int
int

int
int

int

int

Arrays can hold objects of most any type

An array is an object, so we can define pointers and
references to arrays

Arrays can be defined to hold pointers or reference to an
array

arr [10];

* parl[10]; // par is an array of 10 pointers to
int

&refs [10] = ?; // error: no arrays of references
(*par2)[10] = &arr [0]; // par2 is pointer to array
of 10 ints

(&par3)[10] = arr; // par3 is a reference to array
of 10 ints

x(&pard)[10] =parl; // pard is a ref to array of
10 pointers to int

79/87

Accessing array elements

An array of size N has indices from 0 to N-1.
The [] operator is used to access the contents of an array

Example : re-implementation of CountGrades.cpp

unsigned count[11] = {}; // initialize with zeros
unsigned grade;
while (cin >> grade){
if (grade <= 100) {
count|[grade / 10 | ++ ;
}
}

Care must be taken to check the subscript to an array is
within the bounds of the size of the array.

73/87

Pointers and arrays

The array name typically becomes a pointer to the first

element of an array.

We can then do pointer arithmetic to get elements other

than the first element. For example:

string colors[] = {"red", "green",

string #* pcols colors; //pointer
element in colors

string % pcols2 &(colors [0]); //

string * pcl pcols+1; // pcl now
colors [1]

string * pc2
colors [2]

pcols+2; // pc2 now

"blue" };
to first

same as pcols
points to

points to

pcols++; // pcols now points to colors[1]

74/87

Pointers are iterators

» Same iterator operations work on arrays as did on vectors

w N e

and strings

Example iterating over array:

int arr[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90,
100};
int *xpbeg = arr;// pointer to first element in arr

int *pend = &arr [10];// pointer one past last
element in arr
for (int *i = pbeg; i != pend; i++){
cout << *i << endl; // print element in arr
}

Can also use use library begin() and end() functions to
help get front and back iterators to built in arrays. Using
same arr as above:

for (auto i = begin(arr); i != end(arr); i++){
cout << xi << endl;
}

75/87

Pointers arithmetic

1
2
3
|

Pointers to array elements can use all usual iterator
operations

When we add (subtract) an integer value to (from) a
pointer, the result is a new pointer to that number of
elements ahead (behind) in the array.

Subscript to array should normally be defined as size_t
type, declared in cstddef header file.

#include <cstddef>

const size_t nvals = 5;

int arr|[nvals | = { 0, 1, 2, 3, 4 };

int xip = arr; // equivalent to &arr [0]

int xip2 = ip + 4; // equivalent to &arr [4]

int *pend = ip + nvals;// ok: but dont dereference
int *xip3 = ip + 10; // error: arr only has 5 values
auto n = end(arr) — begin(arr); // n is 5

76/87

Dereferencing and pointer arithmetic

» Result of adding value to a pointer is a pointer

» Assuming resulting pointer still points to an element we can
dereference it.

1 int arr[] = { 0, 1, 2, 3, 4};
2 int i = arr[2];

3 int *p = arr;

4

i = %(p+2); // equivalent to i = arr[2]

p = &arr [2]; // p redefined to point to arr[2]
int j =p[1l]; // p[l] is arr[3], j=3

int k = p[—2]; // p[—2] is arr[0], k=0

ot

~

» Note that built in subscript operator can be negative.

» Again: subscript must refer to a location with an element
that has been defined.

77 /87

Multidimensional arrays

>

Multidimensional arrays are really arrays of arrays:

int arrl[10][4]; // array of size 10; each element
is an array of 4 int

// below: array of size 2; each element is array
of 4 elements,

// whose elements are arrays of 6 elements.

int arr2[2][4][6]={0}; // all elements init to 0

List initializing elements of multi-dim. arrays:

int arr3[4][3] = {

[
{0, 1, 2 },
{3, 4, 5 },
{6, 7, 8 },
{9, 8, 7}

};
int arr4 [4][3] = {

0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 8, 7 };
// initialize element 0 in each row:
int arr5[4][3] ={ {0}, {1}, {2}, {3} };
Nested braces are optional, though help with clarity

78/87

Example accessing elements of 2-dim array

» Use a nested for loops to access elements of multi-dim
arrays

» One for loop indexes row, second indexes column. Example,
fill a 2-d array with multiplication table.

MultTable.cpp

1 const size_t nRows = 10;

2> const size_t nCols = 5;

3 int multTable[nRows][nCols];

. for (size_t i =0 ; i != nRows; i++){

5 for (size t j =0 ; j != nCols ; j++){
6 multTable[i][j] = (i+1)*(j+1);

o}

5 }

79/87

Range for loop for multi-d arrays

Can use range for loop to traverse multi-dim array using a
nested loop. Example setting each element as its index in
overall array.

const size_t nRows = 10;
const size_t nCols = 5;
3 size_t idx = 0 ;
int multTable[nRows |[nCols |;
for (auto & row : multTable){
for (auto & col : row){
col = idx;
idx—++;
}
}

Note that to use multi-dim array in a range for, loop control
variable for all but the innermost loop must be references.

80/87

Pointers and multi-dim arrays

» When defining pointers to multi-dim array, remember that it
is really an array of arrays.

» Also note the use of brackets below to differentiate an array
of pointers from a pointer to an array
1 int arr[3][4];

2 int (*p)[4] = arr; // p points to first row
array of four ints

3 p = &arr[?]; // p now points to last row : array
of four ints
4 int xip [4]; // array of pointers to int

5 int (*ip2)[4]; // pointer to an array of four ints

81/87

A little matrix algebra

» Matrices are used to represent systems of linear equations.
> A matrix of dimensions n X m has n rows and m columns.

» For example u is a 3 X 1 matrix:

X

» Below A and C are 3 x 3 matrix:

1 5 0 2 4 6
A=(7 1 2| c=|-1 -4 5 (1)
00 1 9 0 4

» Adding two matrices, requires the two matrices to have the same
dimensions, and the result is to add the corresponding components of
the matrices. In above A 4+ C results in:

39 6
A+C=1|6 -3 7
9 0 5

82/87

Multiplying matrix by a scalar

» Multiplying a matrix by a scalar (a single number),
multiplies every element of the matrix by that number. Eg.
Multiply A by 3 results in:

3 15 0
3A=121 3 6
0 0 3

83/87

Matrix multiplication

> Only defined iff number of columns in left matrix matches
the number of rows in right matrix

» Multiplying an m x n matrix, Q, by an n X p matrix, R,
results in an m X p matrix with elements:

[QR]U = Z QirRrj
r=1

» Example 1: Using matrices on previous page Au is a 3 x 3
matrix multiplied by a 3 X 1 matrix with elements:

[Au]11 Ariuir + Arsuor + Ajsusz: 1+10+0 11
[Aula1 | = [A21ui1 + Asouor + Assus: | = 7+2+6 | = 15

[Au]s1 Aszi1uir + Asouzr + Assusi 04+0+4+3 3

84/87

Matrix multiplication code example
» Find AB when A and B are:
2 4 6 8
B= (—1 -2 -3 —4)

» Note that we need three nested for loops to calculate the
elements:

5

=~ W N =
o N O

n

[AB]” = Z AirArj

r=1

» One for loop over i, a second over j, and a third over r the
number of columns in A (rows in B)

85/87

Matrix multiplication code example

MatrixMult.cpp

const size_t Nm = 4, Nr = 2, Nn = 4;
double A[Nm|[Nr] = { { 1.0, 5.0 },
{ 2.0, 6.0 },
{ 3.0, 7.0 },
{ 4.0, 8.0 } };
double B[Nr|[Nn] = { { 2.0, 4.0, 6.0, 8.0 },
{-1.0,-2.0,-3.0,-4.0 } };
// A is 4x2, B is 2x4, therefore AB is 4x4

double AB[4][4] = {};
// [AB] _ij = sum(r=1 to n, A_ir Brj);
// i labels row of AB
// j labels col of AB
// t labels sum for each entry in new matrix
for (size t i =0 ; i <Nm ; i++){
for (size_t j =0 ; j <Nn ; j+){
for(51zetr:O;r<Nr;r—|—|—){
AB[i][j] 4= Ali][r] * B[r][j];

1

1 86/87

Week3 Donel

» Homework 2 given out last week due Sept. 21 by 17:00
» Homework 3 given out today due Sept. 28 by 17:00

» Lets work on these together now!

87 /87

	Title page
	Outline
	Strings, Vectors, Errors and Arrays
	using declarations
	The standard library string
	Standard library vector
	Iterators
	Errors
	Arrays
	Multidimensional arrays

